首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   2篇
  国内免费   6篇
大气科学   5篇
地球物理   96篇
地质学   26篇
海洋学   4篇
天文学   1篇
自然地理   12篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   10篇
  2008年   19篇
  2007年   15篇
  2006年   7篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   7篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   3篇
  1995年   6篇
  1993年   10篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有144条查询结果,搜索用时 750 毫秒
1.
 The Middle Jurassic Kirkpatrick flood basalts and comagmatic Ferrar intrusions in the Transantarctic Mountains represent a major pulse of tholeiitic magmatism related to early stages in the breakup of Gondwana. A record of the volcano-tectonic events leading to formation of this continental flood-basalt province is provided by strata underlying and only slightly predating the Kirkpatrick lavas. In the central Transantarctic Mountains, the lavas rest on widespread (≥7500 km2) tholeiitic pyroclastic deposits of the Prebble Formation. The Prebble Formation is dominated by lahar deposits and is an unusual example of a regionally developed basaltic lahar field. Related, partly fault-controlled pyroclastic intrusions cut underlying strata, and vents are represented by the preserved flanks of two small tephra cones associated with a volcanic neck. Lahar and air-fall deposits typically contain 50–60% accidental lithic fragments and sand grains derived from underlying Triassic – Lower Jurassic strata in the upper part of the Beacon Supergroup. Juvenile basaltic ash and fine lapilli consist of nonvesicular to scoriaceous tachylite, sideromelane, and palagonite, and have characteristics indicating derivation from hydrovolcanic eruptions. The abundance of accidental debris from underlying Beacon strata points to explosive phreatomagmatic interaction of basaltic magma with wet sediment and groundwater, which appears to have occurred in particular where rising magma intersected upper Beacon sand aquifers. Composite clasts in the lahar deposits exhibit complex peperitic textures formed during fine-scale intermixing of basaltic magma with wet sand and record steps in subsurface fuel-coolant interactions leading to explosive eruption. The widespread, sustained phreatomagmatic activity is inferred to have occurred in a groundwater-rich topographic basin linked to an evolving Jurassic rift zone in the Transantarctic Mountains. Coeval basaltic phreatomagmatic deposits of the Mawson and Exposure Hill Formations, which underlie exposures of the Kirkpatrick Basalt up to 1500 km to the north along strike in Victoria Land, appear to represent other parts of a regional, extension-related Middle Jurassic phreatomagmatic province which developed immediately prior to rapid outpouring of the flood basalts. This is consistent with models which assign an important role to lithospheric stretching in the generation of flood-basalt provinces. Received: 28 August 1995 / Accepted: 18 April 1996  相似文献   
2.
火山射气岩浆喷发作用研究进展   总被引:5,自引:2,他引:5  
孙谦  樊祺诚 《岩石学报》2005,21(6):1709-1718
射气岩浆喷发是一种特殊类型的火山活动,水在这类火山活动中起到至关重要的作用,且其喷发产物——低平火山口和基浪堆积物在我国乃至全世界都有广泛的分布。国际上对射气岩浆喷发的研究始于1921年,迄今为止已有80余年的历史。国内外许多学者运用火山地质学、岩石学、沉积学、物理火山学及数值模拟等多学科研究手段,对射气岩浆喷发作用及其产物进行详细的野外观测描述,并探讨其成因机制。本文在前人研究基础上,以我国南方北部湾周边第四纪火山区大量存在的射气岩浆喷发成因的低平火山口和基浪堆积物为研究对象,深入讨论了基浪堆积物的地质特征、射气岩浆喷发形成的基本条件、喷发过程的动力学机制以及基浪流的搬运过程等几方面重要问题,并对已有的研究成果进行了概括和总结,提出有待解决的难点,揭示了这类火山活动特有的属性。  相似文献   
3.
Submarine pyroclastic eruptions at depths greater than a few hundred meters are generally considered to be rare or absent because the pressure of the overlying water column is sufficient to suppress juvenile gas exsolution so that magmatic disruption and pyroclastic activity do not occur. Consideration of detailed models of the ascent and eruption of magma in a range of sea floor environments shows, however, that significant pyroclastic activity can occur even at depths in excess of 3000 m. In order to document and illustrate the full range of submarine eruption styles, we model several possible scenarios for the ascent and eruption of magma feeding submarine eruptions: (1) no gas exsolution; (2) gas exsolution but no magma disruption; (3) gas exsolution, magma disruption, and hawaiian-style fountaining; (4) volatile content builds up in the magma reservoir leading to hawaiian eruptions resulting from foam collapse; (5) magma volatile content insufficient to cause fragmentation normally but low rise speed results in strombolian activity; and (6) volatile content builds up in the top of a dike leading to vulcanian eruptions. We also examine the role of bulk-interaction steam explosivity and contact-surface steam explosivity as processes contributing to volcaniclastic formation in these environments. We concur with most earlier workers that for magma compositions typical of spreading centers and their vicinities, the most likely circumstance is the quiet effusion of magma with minor gas exsolution, and the production of somewhat vesicular pillow lavas or sheet flows, depending on effusion rate. The amounts by which magma would overshoot the vent in these types of eruptions would be insufficient to cause any magma disruption. The most likely mechanism of production of pyroclastic deposits in this environment is strombolian activity, due to the localized concentration of volatiles in magma that has a low rise rate; magmatic gas collects by bubble coalescence, and ascends in large isolated bubbles which disrupt the magma surface in the vent, producing localized blocks, bombs, and pyroclastic deposits. Another possible mode of occurrence of pyroclastic deposits results from vulcanian eruptions; these deposits, being characterized by the dominance of angular blocks of country rocks deposited in the vicinity of a crater, should be easily distinguishable from strombolian and hawaiian eruptions. However, we stress that a special case of the hawaiian eruption style is likely to occur in the submarine environment if magmatic gas buildup occurs in a magma reservoir by the upward drift of gas bubbles. In this case, a layer of foam will build up at the top of the reservoir in a sufficient concentration to exceed the volatile content necessary for disruption and hawaiian-style activity; the deposits and landforms are predicted to be somewhat different from those of a typical primary magmatic volatile-induced hawaiian eruption. Specifically, typical pyroclast sizes might be smaller; fountain heights may exceed those expected for the purely magmatic hawaiian case; cooling of descending pyroclasts would be more efficient, leading to different types of proximal deposits; and runout distances for density flows would be greater, potentially leading to submarine pyroclastic deposits surrounding vents out to distances of tens of meters to a kilometer. In addition, flows emerging after the evacuation of the foam layer would tend to be very depleted in volatiles, and thus extremely poor in vesicles relative to typical flows associated with hawaiian-style eruptions in the primary magmatic gas case. We examine several cases of reported submarine volcaniclastic deposits found at depths as great as 3000 m and conclude that submarine hawaiian and strombolian eruptions are much more common than previously suspected at mid-ocean ridges. Furthermore, the latter stages of development of volcanic edifices (seamounts) formed in submarine environments are excellent candidates for a wide range of submarine pyroclastic activity due not just to the effects of decreasing water depth, but also to: (1) the presence of a summit magma reservoir, which favors the buildup of magmatic foams (enhancing hawaiian-style activity) and episodic dike emplacement (which favors strombolian-style eruptions); and (2) the common occurrence of alkalic basalts, the CO2 contents of which favor submarine explosive eruptions at depths greater than tholeiitic basalts. These models and predictions can be tested with future sampling and analysis programs and we provide a checklist of key observations to help distinguish among the eruption styles.  相似文献   
4.
We present 24 40Ar/39Ar ages for the youngest volcanic products from the Alban Hills volcanic district (Rome). Combined with petrological data on these products, we have attempted to define the chronology of the most recent phase of activity and to investigate the magma evolution of this volcanic district. The early, mainly explosive activity of the Alban Hills spanned the interval from 561±1 to 351±3 ka. After approximately 50-kyr of dormancy, a mainly effusive phase of activity took place, accompanied by the strombolian activity of a small central edifice (Monte delle Faete). This second phase of activity spanned the interval 308±2 to 250±1 ka. After another dormancy period of approximately 50-kyr, a new, hydromagmatic phase of activity started at 200 ka at several centers located to the southwest of the Monte delle Faete edifice. After an initial recurrence period of approximately 50-kyr, which also characterized this new phase of activity, the longest dormancy period (approximately 80-kyr) in the history of the volcanic district preceded the start of the activity of the Albano and Giuturna centers at 70±1 ka. Results of our study suggest a quasi-continuous magmatic activity feeding hydromagmatic centers with a new acme of volcanism since around 70 ka. Based on data presented in this paper, we argue that the Alban Hills should not be considered an extinct volcanic district and a detailed re-assessment of the volcanic hazard for the area of Rome is in order. Published online: 4 April 2003 Editorial responsibility: J. Donnelly-Nolan  相似文献   
5.
Significant faulting and deformation of the ground surface has been rarely known during volcanic eruptions. Usu Volcano, Hokkaido, Japan, is a unique example of deformation due to felsic magma intrusion. Usu Volcano has a history of such types of eruptions as phreatic, pumice eruption (Plinian type), pyroclastic flowing and lava doming since 1663. On March 31, 2000, phreatomagmatic to phreatic eruptions took place after 23 years of dormancy in the western piedmont, followed by explosions on the western flank of Usu Volcano. They were associated with significant deformation including faulting and uplift. The eruptions and deformation were continuing up to the end of May 2000.We identified the faulting using total nine sets of aerial photographs taken from before the eruption (March 31, 2000) to more than 1 year (April 27, 2001) after the end of the activity, and traced deformation processes through image processing using aerial photographs. We found that some of the new faults and the associated phreatic eruptions were related to old faults formed during the 1977–1981 eruptive episode.The image processing has revealed that the surface deformation is coincident with the area of faulting forming small grabens and the phreatic explosion vents. However, the faulting and main explosive eruptions did not take place in the highest uplift area, but along the margin. This suggests that the faulting and explosive activities were affected by small feeder channels diverging from the main magma body which caused the highest uplift.  相似文献   
6.
The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change.

During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region.  相似文献   

7.
低纬和中高纬度火山爆发与我国旱涝的联系   总被引:4,自引:0,他引:4  
刘永强  李月洪  贾朋群 《气象》1993,19(11):3-7
根据500年旱涝等级资料,采用时序迭加方法,分析了低纬和中高纬火山爆发对我国降水的影响。此外,还对1600-1979年南方涛动指数的变化进行了类似的分析。结果表明,低纬和中高纬火山爆发发后全国旱涝分布型和部分地区降水变化趋势有很大差异。爆发当年华北就可能明显变旱,而次年长江流域才出现明显的降水异常。计算不明,1991年皮纳图博火山及去仙岳火山爆发与江淮特大洪涝有直接联系的可能性不大。  相似文献   
8.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   
9.
We examine the application of Hidden Markov Models (HMMs) to volcanic occurrences. The parameters in HMMs can be estimated from data by means of the Expectation–Maximization (EM) algorithm. Various formulations permit modelling the activity level of a volcano through onset counts, the intensity of a Markov Modulated Poisson Process (MMPP), or through the intervals between onsets. More elaborate models allow investigation of the relationship between durations and reposes. After fitting the model, the Viterbi algorithm can be used to identify the underlying (hidden) activity level of the volcano most consistent with the observations. The HMM readily provides forecasts of the next event, and is easily simulated. Data of flank eruptions 1600–2006 from Mount Etna are used to illustrate the methodology. We find that the volcano has longish periods of Poissonian behaviour, interspersed with less random periods, and that changes in regime may be more frequent than have previously been identified statistically. The flank eruptions of Mount Etna appear to have a complex time-predictable character, which is compatible with transitions between an open and closed conduit system. The relationship between reposes and durations appears to characterize the cyclic nature of the volcanoes activity.  相似文献   
10.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号